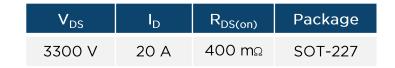
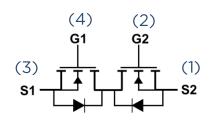
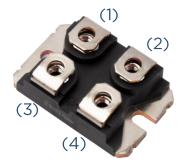
NOVEL MATERIALS AND INNOVATIVE SEMICONDUCTORS

NCD3T400MP330S


3300 V Silicon Carbide Bi-Directional MOSFET (CD-BiFET)

Features

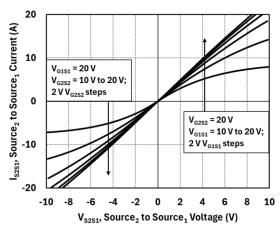

- State-of-the-art SiC MOSFET technology
- Reliable gate oxide process
- 100% avalanche tested
- Dual gate control
- · Electrically isolated baseplate


Benefits

- Higher system efficiency
- Reduced cooling requirements
- Increased power density
- Increased system switching frequency
- · Enhanced system reliability
- Reduced total harmonic distortion

COMING SOON - 200 mΩ CD-BiFET

Applications


- Solid-state circuit breakers
- Matrix (AC/AC) converters
- Current source converters
- Energy storage systems
- Solid-state power controllers
- Uninterruptible power supplies

Electrical Characteristics


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	Note
Drain-Source Voltage	V _{(BR)S2S1}	T _C = 25 °C	3300	-	-	>	
Zero Gate Voltage Drain Current	I _{S2S1}	V _{S2S1} = 3300 V, V _{G1S1} = 0 V	-	1	100	μА	
Gate-Source Voltage	V _{GS(max)}		-10	1	25	· v	
	$V_{\rm GS,op}$	Recommended Operation	-	-5/+20	-		
Gate Threshold Voltage	V _{G1S1(th)}	$V_{G1S1} = V_{S2S1}$, $V_{G1S1} = 20$ V, $I_{S2} = 2.5$ mA	2	2.64	3	٧	Fig. 4
Drain-Source On-State Resistance	R _{S2S1(on)}	T _C = 25 °C	-	400	ı	mΩ	Fig. 1
Continuous Drain Current	I _S	V _{G1S1} = 20 V, T _C = 25 °C	-	20	-	Α	
Turn-On Switching Energy	E _{ON}	V_{S2} = 2000 V, I_{S2} = 15 A, V_{G1S1} = -5 / +20 V, $R_{G(ext)}$ = 10 Ω , L = 1.7 mH	-	1550	-	μJ	
Turn-Off Switching Energy	E _{OFF}		-	155	1		Fig. 3
Total Switching Energy	E _{TOT}		-	1705	-		

NOVEL MATERIALS AND INNOVATIVE SEMICONDUCTORS

Typical Performance

Figure 1: Forward and Reverse Output Characteristics: $t_p < 200 \mu s$, $T_C = 25 ^{\circ}C$

 v_{s2s1} , Source₂ to Source₁ Voltage (V) Figure 3: Forward and Reverse Output Characteristics: $t_{\rm p} < 200~\mu s$, $T_{\rm C} = 25~{\rm ^{\circ}C}$

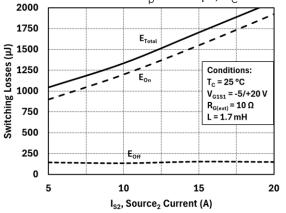
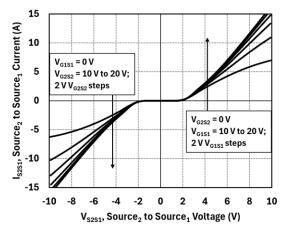



Figure 5: Switching Energy vs. Drain Current

Figure 2: Forward and Reverse Output Characteristics: $t_p < 200 \mu s$, $T_C = 25 ^{\circ}C$

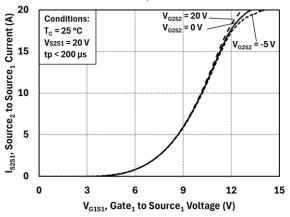


Figure 4: Transfer Characteristics

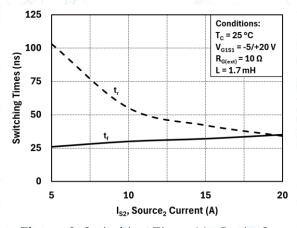


Figure 6: Switching Times Vs. Drain Current

NoMIS Power and NoMIS Power are registered trademarks of NoMIS Power Corporation in the United States and/or other countries. NoMIS Power reserves the right to make changes without further notice to any products herein. NoMIS Power makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NoMIS Power assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. NoMIS Power does not convey any license under its patent rights nor the rights of others.