
N3T200MP330S 3300 V 200 mΩ Silicon Carbide MOSFET

State-of-the-art SiC MOSFET technology

V_{DS}	I _D	R _{DS(on)}	Package
3300 V	20 A	200 mΩ	SOT-227

(4) G D (1) (2) KS S (3)

Benefits

Features

Higher system efficiency

Reliable gate oxide process100% avalanche tested

Electrically isolated baseplate

- Reduced cooling requirements
- Increased power density
- Increased system switching frequency
- Enhanced system reliability
- Reduced total harmonic distortion

Applications

- Motor drives
- Solar PV inverters
- EV onboard chargers
- · Server power supplies
- Energy storage systems
- EV fast charging stations
- · Solid-state power controllers
- Uninterruptible power supplies

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	Note
Drain-Source Voltage	V _{(BR)DSS}	T _C = 25 ° C	3300	-	1	٧	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 0 V, V_{GS} = 0 V$	-	1	100	μΑ	Fig. 6
Gate-Source Voltage	V _{GS(max)}		-10	1	25	V	
	$V_{\rm GS,op}$	Recommended Operation	-	-5/+20	ı		
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 2.5$ mA	2	2.64	3	>	Fig. 4
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 20 V, T _C = 25 °C	-	200	ı	mΩ	Fig.
Continuous Drain Current	I _D	V _{GS} = 20 V, T _C = 25 °C	-	20	ı	Α	
Diode Forward Voltage	V _{SD}	V _{GS} = -5 V, I _{SD} = 10 A	-	5	ı	V	Fig. 5

NOVEL MATERIALS AND INNOVATIVE SEMICONDUCTORS

Typical Performance

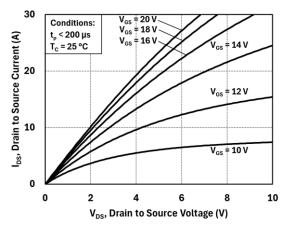


Figure 1: Output Characteristics at 25 °C

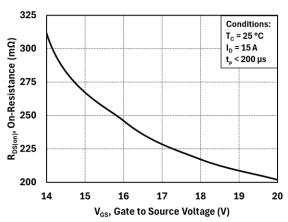


Figure 3: On-Resistance vs. Gate Voltage

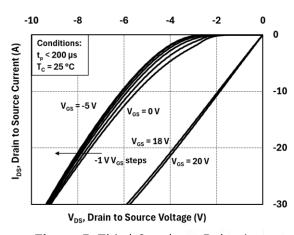


Figure 5: Third Quadrant Behavior

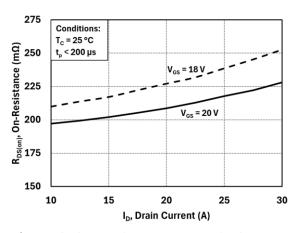


Figure 2: On-Resistance vs. Drain Current

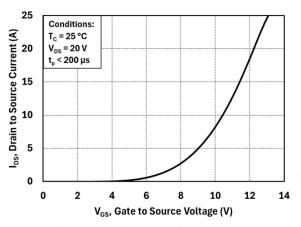


Figure 4: Transfer Characteristics

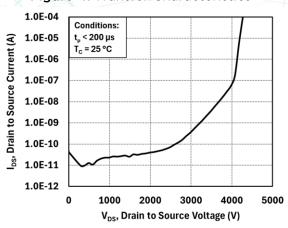


Figure 6: Blocking Behavior

NoMIS Power and NoMIS Power are registered trademarks of NoMIS Power Corporation in the United States and/or other countries. NoMIS Power reserves the right to make changes without further notice to any products herein. NoMIS Power makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NoMIS Power assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. NoMIS Power does not convey any license under its patent rights nor the rights of others.